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ABSTRACT
In this paper, we introduce the definition (F,G f )-convexity and give a nontrivial example existing such type of func-
tions. Further, a generalization of convexity, namely (F,G f )-convexity, is introduced in the case of non-linear multi-
objective programming problems where the functions constituting vector optimization problems are differentiable.
Further, second-order Wolfe type primal-dual pair has been formulated and proved weak, strong and converse duality
theorems under (F,G f )-convexity assumptions.
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I. INTRODUCTION

An Optimization problem is the problem of finding the best solution from all feasible solutions. Generally, all
problems to be optimized should be able to be formulated as a system with its status controlled by one or more input
variables and its performance specified by a well defined Objective Function.The goal of optimization is to find the
best value for each variable in order to achieve satisfactory performance.Optimization is an active and fast growing
research area and has a great impact on the real world.

One practical advantage of second order duality is that it provides tighter bounds for the value of the objective
function of the primal problem when approximations are used because there are more parameters involved. Duality is
one of the most important topic in operation research as it helps us in generating useful insights about the optimization
problem. Mangasarian [11] is introduced the concept of second-order duality for nonlinear programming . Two dis-
tinct pairs of second-order symmetric dual problems under generalized bonvexity/ boncavity assumptions studied in
Gulati et al. [7]. Furthermore, Gulati and Gupta [8] have been introduced the concept of η1-bonvexity/ η2-boncavity
and derived duality results for a Wolfe type model.

The concept of G-invex function has been introduced by Antczak [1] and further derived some optimality
conditions for constrained optimization problem. Extended the above notion by defining a vector valued G f - invex
function, Antzcak [2] proved necessary and sufficient optimality conditions for a multiobjective nonlinear program-
ming problem. In last several years, various optimality and duality results have been obtained for multiobjective
fractional programming problems. In Chen [3], multiobjective fractional problem and its duality theorems have been
considered under higher-order (F,α,ρ,d)- convexity. Later on, Suneja et al. [13] discussed higher-order Mond-Weir
and Schaible type nondifferentiable dual programs and their duality theorems under higher-order (F,ρ,σ) -type I-
assumptions. Recently, several researchers like (see[5, 6, 14]) have also worked in the same direction.

In this article, we have introduce the definition of (F,G f )-convex function. Further, we construct a nontrivial
numerical example which is (F,G f )-convex but it is neither second-order F-convex nor F-convex. Also, we have
consider Wolfe type multiobjective second-order symmetric dual program and establish the duality relations under
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(F,G f )- convexity assumptions.

II. NOTATIONS AND PRELIMINARIES

Consider the following vector minimization problem:

(MP) Minimize f (x) =
{

f1(x), f2(x), ..., fk(x)
}T

Subject to X0 = {x ∈ X ⊂ Rn : g j(x)≤ 0, j = 1,2, ...,m}

where f = { f1, f2, ..., fk} : X → Rk and g = {g1,g2, ...,gm} : X → Rm are differentiable functions defined on X .

Definition 2.1 A point x̄ ∈ X0 is said to be an efficient solution of (MP) if there exists no other x ∈ X0 such that
fr(x)< fr(x̄), for some r = 1,2, ...,k and fi(x)≤ fi(x̄), for all i = 1,2, ...,k.

Definition 2.2. A functional F : X × X × Rn → R is said to be sublinear with respect to the third variable if for
all (x,u) ∈ X×X ,

(i) Fx,u(a1 +a2)≤ Fx,u(a1)+Fx,u(a2), for all a1, a2 ∈ Rn,
(ii) Fx,u(αa) = αFx,u(a), for all α ∈ R+ and a ∈ Rn.

Many generalizations of the definition of a convex function have been introduced in optimization theory in order
to weak the assumption of convexity for establishing optimality and duality results for new classes of nonconvex opti-
mization problems, including vector optimization problems. One of such a generalization of convexity in the vectorial
case is the G-invexity notion introduced by Antczak for differentiable scalar and vector optimization problems (see
[1, 2] respectively). We now generalize and extend it to the nondifferentiable vectorial case namely, motivated by
Jeyakumar and Mond [12] and Antczak [2], we introduce the concept of (F,G f )-convex.

Definition 2.3. Let f : X → Rk be a vector-valued differentiable function. If there exist a sublinear functional F
and differentiable function G f = (G f1 ,G f2 , ...,G fk) : R→ Rk such that every component G fi : I fi(X)→ R is strictly
increasing on the range of I fi such that ∀ x ∈ X and p ∈ Rn,

G fi( fi(x))−G fi( fi(u)) ≥ Fx,u[G′fi( fi(u))∇x fi(u)+{G′′fi( fi(u))∇x fi(u)(∇x fi(u))T +G′fi( fi(u))∇xx fi(u)}p]

− 1
2

pT [G′′fi( fi(u))∇x fi(u)(∇x fi(u))T +G′fi( fi(u))∇xx fi(u)]p, for all i = 1,2, ...,k,

then f is called (F,G f )-convex at u ∈ X .
If the above inequality sign changes to ≤, then f is called (F,G f )-concave at u ∈ X with respect to η .
If the function fi, i = 1,2, ...,k satisfies above inequality, then we will say that fi is (F,G fi)-convex at u ∈ X .
If the above inequalities sign changes to ≤, then f is called (F,G f )-concave at u ∈ X .

Remark 2.1 If Fx,u(a) = ηT (x,u)a, then Definition 2.3 becomes G f -bonvex given by [9].

Now, we give a nontrivial example which is (F,G f )-convex function but not F-convex function.

Example 2.1. Let f : [−1,1]→ R2 be defined as

f (x) = { f1(x), f2(x)},
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Figure 1:
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Figure 2:

where f1(x) = x3, f2(x) = x4 and G f = {G f1 ,G f2} : R→ R2 be defined as:

G f1(t) = t2 +1, G f2(t) = t4.

Let F : X×X×R2→ R be given as:
Fx,u(a) = |a|(x2−u2).

For showing that f is (F,G f )-convex at u = 0, for this we have to claim that

πi = G fi( fi(x))−G fi( fi(u))−Fx,u[G′fi( fi(u))∇x fi(u)+{G′′fi( fi(u))∇x fi(u)(∇x fi(u))T+

G′fi( fi(u))∇xx fi(u)}pi]+
1
2

pT
i [G

′′
fi( fi(u))∇x fi(u)(∇x fi(u))T +G′fi( fi(u))∇xx fi(u)]pi ≥ 0, for i = 1,2.

Putting the values of f1, f2, G f1 and G f2 in the above expressions, we have

π1 = (x6 +1)− (u6 +1)−Fx,u[6u5 +{18u4 +6u5}p1]+
1
2

p2
1{18u4 +6u5},
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Figure 3:

and

π2 = x16−u16−−Fx,u(16u15 +{12×16u17 +48u14}p2)+
1
2

p2
2{12×16u17 +48u14},

At u = 0 ∈ [−1,1], the above expressions reduces:

π1 = x6 and π2 = x16 for all x ∈ [−1,1]

and hence π1 ≥ 0 and π2 ≥ 0,
(

from figures (1) and (2)
)
, for all x ∈ [−1,1].

Therefore, f is (F,G f )-convex at u = 0.
Now, suppose

π3 = f1(x)− f1(u)−Fx,u[∇x f1(u)+∇xx f1(u)p1]+
1
2

pT
1 [∇xx f1(u)]p1.

or

π3 = x3−u3−Fx,u[3u2 +6up1]+3up2
1

which at u = 0 yields

π3 = x3, for all x ∈ [−1,1].
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Obviously,

π3 � 0,
(

from figure (3)
)
.

Therefore, f1 is not second-order F-convex at u = 0 with respect to p. Hence, f = ( f1, f2) is not second-order F-
convex at u = 0 with respect to p.
Finally, consider

ξ = f1(x)− f1(u)−Fx,u(∇x f1(u))

or

ξ = x3−u3−Fx,u(3u2)

which at u = 0 and using sublinearity of functional F , we get

ξ = x3.

At the point x = −1
3 ∈ [−1,1], obtain

ξ =
−1
27

� 0.

Therefore, f1 is not F-convex at u = 0. Hence, f = ( f1, f2) is not F-convex at u = 0.

III. WOLFE TYPE SYMMETRIC DUAL PROGRAM

Consider the following pair of Wolfe type dual program:
Primal problem (WP):

Minimize R(x,y,λ , p) =
(

R1(x,y,λ1, p),R2(x,y,λ2, p), ...Rk(x,y,λk, p)
)T

Subject to

k

∑
i=1

λi

[
G′fi( fi(x,y))∇y fi(x,y)+{G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))∇yy fi(x,y)}p

]
≤ 0, (1)

λ > 0, λ
T ek = 1. (2)

Dual problem (WD):

Maximize S(u,v,λ ,q) =
(

S1(u,v,λ1,q),S2(u,v,λ2,q), ...,Sk(u,v,λk,q)
)T

Subject to

k

∑
i=1

λi

[
G′fi( fi(u,v))∇x fi(u,v)+{G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v))}q

]
≥ 0, (3)

λ > 0, λ
T ek = 1, (4)
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where for all i = 1,2, ...,k,

Ri(x,y,λ , p)=G fi( fi(x,y))−yT
k

∑
i=1

λi

(
G′fi( fi(x,y))∇y fi(x,y)+[G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T G′fi( fi(x,y))∇yy fi(x,y)]p

)

− 1
2

k

∑
i=1

λi pT
(

G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))∇yy fi(x,y)
)

p,

Si(u,v,λ ,q)=G fi( fi(u,v))−uT
k

∑
i=1

λi

(
G′fi( fi(u,v))∇x fi(u,v)+[G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q

)

− 1
2

k

∑
i=1

λiqT
(

G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)
)

q,

(i) fi and G fi are differentiable functions in x and y, ek = (1,1, ...,1)T ∈ Rk,
(ii) pi and qi are vectors in Rm and Rn, respectively, λ ∈ Rk.

The following example shows the feasibility of the (WP) and (WD) problem discussed above:

Example 3.1 Let k = 2. Let fi : X×Y → R be defined as

f1(x,y) = x3, f2(x,y) = y3.

Suppose G fi(t) = t, i = 1,2.

(EWP) Minimize
R(x,y) = (x3− yλ2[3y2 +6yp]−3λ2yp2, y3− yλ2[3y2 +6yp]−3λ2yp2)

Subject to

λ2(3y2 +6yp)≤ 0,

λ1,λ2 > 0,λ1 +λ2 = 1.

(EWD) Maximize

S(u,v) = (u3−uλ1[3u2 +6uq]−3λ1q2u, v3−uλ1[3u2 +6uq]−3λ1q2u)

Subject to

λ1[3u2 +6uq]≥ 0,

λ1,λ2 > 0,λ1 +λ2 = 1.

One can easily verify that x = 3,y = 0,λ1 =
1
2
,λ2 =

1
2
, p = 2 is a feasible solution of primal problem and u = 0,v =

1
3
,λ1 =

1
2
,λ2 =

1
2
,q = 1 is a feasible solution of dual problem. This shows that such primal-dual pair (EWP) and

(EWD) exist.

Next, we prove duality theorems for the pair (WP) and (WD).

Theorem 3.1 (Weak duality theorem). Let (x,y,λ , p) and (u,v,λ ,q) be feasible solutions of primal and dual problem,
respectively. Let for all i = 1,2, ...,k,
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(i) fi(.,v) be (F,G fi)-convex at u ,

(ii) fi(x, .) be (H,G fi)- concave at y,

where the sublinear functionals F : Rn×Rn×Rn→ R and H : Rm×Rm×Rm→ R satisfy the following conditions:

(iii) Fx,u(a)+aT u≥ 0, ∀ a ∈ Rn
+,

(iv) Hv,y(b)+bT y≥ 0, ∀ b ∈ Rm
+.

Then, the following cannot hold:

Ri(x,y,λ , p)≤ Si(u,v,λ ,q), for all i = 1,2, ...,k (5)

and

Rr(x,y,λ , p)< Sr(u,v,λ ,q), for some r = 1,2, ...,k. (6)

Proof. Suppose on the contrary that (5) and (6) hold. Then, using λ > 0, we obtain

k

∑
i=1

λi

[
G fi( fi(x,y))− yT

k

∑
i=1

λi

(
G′fi( fi(x,y))∇y fi(x,y)+G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))

∇yy fi(x,y)]p
)
− 1

2

k

∑
i=1

λi

(
pT [G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))∇yy fi(x,y)]p

)]

<
k

∑
i=1

λi

[
G fi( fi(u,v))−uT

k

∑
i=1

λi

(
G′fi( fi(u,v))∇x fi(u,v)+G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))

∇xx fi(u,v)]q
)
− 1

2

k

∑
i=1

λi

(
qT [G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q

)]
. (7)

Since fi(.,v) is (F,G fi)-convex at u, we get

G fi( fi(x,v))−G fi( fi(u,v))≥ Fx,u[G′fi( fi(u,v))∇x fi(u,v)+{G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))

∇xx fi(u,v)}q]−
1
2

qT [G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q.

Since λ > 0 and using sublinearity of F at the third position, the above inequality yields

k

∑
i=1

λi
[
G fi( fi(x,v))−G fi( fi(u,v))

]
≥ Fx,u

{ k

∑
i=1

λi
[
G′fi( fi(u,v))∇x fi(u,v)+{G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T

+G′fi( fi(u,v))∇xx fi(u,v)}q
]}
− 1

2

k

∑
i=1

λiqT [G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q.

Further, using hypothesis (iii) and dual constraint (3), we get

k

∑
i=1

λi
[
G fi( fi(x,v))−G fi( fi(u,v))

]
≥−uT

k

∑
i=1

λi
[
G′fi( fi(u,v))∇x fi(u,v)+{G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T

+G′fi( fi(u,v))∇xx fi(u,v)}q
]
− 1

2

k

∑
i=1

λiqT [G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q. (8)
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Similarly, using hypotheses (i), (iv) and dual constraint (1), we get

k

∑
i=1

λi
[
−G fi( f (x,v))+G fi( fi(x,y))

]
≥ yT

k

∑
i=1

λi
[
G′fi( fi(x,y))∇y fi(x,y)+{G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T

+G′fi( fi(x,y))∇yy fi(x,y)}p
]
+

1
2

k

∑
i=1

λi pT [G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))∇yy fi(x,y)]p. (9)

Finally, adding inequalities (8), (9) and λ T ek = 1, we get

k

∑
i=1

λi

[
G fi( fi(x,y))− yT

k

∑
i=1

λi

(
G′fi( fi(x,y))∇y fi(x,y)+G′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))

∇yy fi(x,y)]p
)
− 1

2

k

∑
i=1

λi

(
pT [G′′fi( fi(x,y))∇y fi(x,y)(∇y fi(x,y))T +G′fi( fi(x,y))∇yy fi(x,y)]p

)]

≥
k

∑
i=1

λi

[
G fi( fi(u,v))−uT

k

∑
i=1

λi

(
G′fi( fi(u,v))∇x fi(u,v)+G′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))

∇xx fi(u,v)]q
)
− 1

2

k

∑
i=1

λi

(
qT [G′′fi( fi(u,v))∇x fi(u,v)(∇x fi(u,v))T +G′fi( fi(u,v))∇xx fi(u,v)]q

)]
.

This contradicts (7). Hence, the result.

Theorem 3.2 (Strong duality). Let (x̄, ȳ, λ̄ , p̄) be an efficient solution of (WP); fix λ = λ̄ in (WD) such that

(i) for all i = 1,2, ...,k, [G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)] is nonsingular,

(ii)
k

∑
i=1

λ̄i∇y

(
{G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)} p̄

)
p̄

/∈ span
{

G′f1( f1(x̄, ȳ))∇y f1(x̄, ȳ), ...,G′fk( fk(x̄, ȳ))∇y fk(x̄, ȳ)
}
\{0},

(iii) the vectors
{

G′f1( f1(x̄, ȳ))∇y f1(x̄, ȳ),G′f2( f2(x̄, ȳ))∇y f2(x̄, ȳ), ...,G′fk( fk(x̄, ȳ))∇y fk(x̄, ȳ)
}

are linearly indepen-

dent,

(iv)
k

∑
i=1

λ̄i∇y

(
{G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)} p̄

)
p̄ = 0⇒ p̄ = 0.

Then, q̄ = 0 such that (x̄, ȳ, λ̄ , q̄ = 0) is feasible solution for (WD) and the value of objective functions are equal. Also,
if the assumptions of weak duality theorem hold, then (x̄, ȳ, λ̄ , q̄ = 0) is an efficient solution for (WD).

Proof. Since (x̄, ȳ, λ̄ , p̄) is an efficient solution of (WP), using Fritz -John necessary conditions [4], then there ex-
ist α ∈ Rk, β ∈ Rm and η ∈ R such that

k

∑
i=1

αi[G′fi( fi(x̄, ȳ))∇x fi(x̄, ȳ)]+
k

∑
i=1

λ̄i

[
G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)∇x fi(x̄, ȳ)+G′fi( fi(x̄, ȳ))∇xy fi(x̄, ȳ)

](
β − (αT ek)ȳ

)

+
k

∑
i=1

λ̄i∇x

[
(G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ))p̄

](
β − (αT ek)(ȳ+

1
2

p̄)
)
= 0, (10)
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k

∑
i=1

(
αi− (αT ek)λ̄i

)[
G′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)

]
+

k

∑
i=1

λ̄i

[{
G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T

+G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)
}(

β − (αT ek)(ȳ+ p̄)
)
+

k

∑
i=1

λ̄i

[
∇y{G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T

+G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ))p̄}]
(

β − (αT ek)(ȳ+
1
2

p̄)
)]

= 0, (11)

[
G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)

][(
β − (αT ek)(p̄+ ȳ)

)
λ̄i

]
= 0, i = 1,2, ...,k, (12)

G′f ( f (x̄, ȳ))∇y f (x̄, ȳ)
(

β − (αT ekȳ)
)
+ηek +

{(
β − (αT ek)(ȳ+ 1

2 p̄1)

)T(
G′′f1( f1(x̄, ȳ))∇y f1(x̄, ȳ)(∇y f1(x̄, ȳ))T

+G′f1( f1(x̄, ȳ))∇yy f1(x̄, ȳ))p̄1

)
, ...,

(
β − (αT ek)(ȳ+ 1

2 p̄k)

)T(
G′′fk( fk(x̄, ȳ))∇y fk(x̄, ȳ)(∇y fk(x̄, ȳ))T

+G′fk( fk(x̄, ȳ))∇yy fk(x̄, ȳ))p̄k

)}
= 0, (13)

β
T

k

∑
i=1

λ̄i[G′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)+{G′′fi( fi(x̄, ȳ))∇x fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ)}p̄] = 0, (14)

η
T [λ̄ T ek−1] = 0, (15)

(α,β )≥ 0, (α,β ,η) 6= 0. (16)

Equation (13) can be written as

G′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)
(

β − (αT ek)ȳ
)
+

(
β − (αT ek)(ȳ+ 1

2 p̄)
)T(

(G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T

+G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ))p̄
)
+η = 0, i = 1,2, ...,k. (17)

By hypothesis (i) and λ̄i > 0, for i = 1,2, ...,k, (12) gives

β = (αT ek)(p̄+ ȳ), i = 1,2, ...,k. (18)

If α = 0, then (18) implies that β = 0. Further, equation (17) gives η = 0. Consequently, (α,β ,η) = 0, which contra-
dicts (16). Hence, α 6= 0, or αT ek > 0.

Using (18) and αT ek > 0 in (11), we get

k

∑
i=1

λ̄i

[(
∇y

{
(G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ))p̄

}
p̄
)]

=− 2
αT ek

k

∑
i=1

[G′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)]
(

αi− (αT ek)λ̄i

)
. (19)
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It follows from hypothesis (ii) that

k

∑
i=1

λ̄i

[(
∇y

{
(G′′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T +G′fi( fi(x̄, ȳ))∇yy fi(x̄, ȳ))p̄

}
p̄
)]

= 0. (20)

Hence, by hypothesis (iv), we obtain

p̄ = 0. (21)

Therefore, the inequality (18) implies

β = (αT ek)ȳ. (22)

Now, using (21) in (19), we obtain

k

∑
i=1

(
αi− (αT ek)λ̄i

)
[G′fi( fi(x̄, ȳ))∇y fi(x̄, ȳ)] = 0.

From hypothesis (iii), it yields

αi = (αT ek)λ̄i, i = 1,2, ...,k. (23)

Using αT ek > 0, (21)-(23) in (10), we get

x̄T
k

∑
i=1

λ̄i

[
G′fi( fi(x̄, ȳ))∇x fi(x̄, ȳ)]

]
= 0.

Further, using (14), αT ek > 0, (21) and (22), we have

ȳT
k

∑
i=1

λ̄i

[
G′fi( fi(x̄, ȳ))∇x fi(x̄, ȳ)]

]
= 0. (24)

Hence, (x̄, ȳ, λ̄ , q̄ = 0) satisfies the constraints (3) and (4) of (WD) and clearly a feasible solution for the dual problem
(WD). Hence, the result.

Theorem 3.3 (Converse duality). Let (ū, v̄, λ̄ , q̄) be an efficient solution of (WD); fix λ = λ̄ in (WP) such that

(i) for all i = 1,2, ...,k, [G′′fi( fi(ū, v̄))∇x fi(ū, v̄)(∇x fi(ū, v̄))T +G′fi( fi(ū, v̄))∇xx fi(ū, v̄)] is nonsingular,

(ii)
k

∑
i=1

λ̄i∇x

(
{G′′fi( fi(ū, v̄))∇x fi(ū, v̄)(∇x fi(ū, v̄))T +G′fi( fi(ū, v̄))∇xx fi(ū, v̄)}q̄

)
q̄

/∈ span
{

G′f1( f1(ū, v̄))∇x f1(ū, v̄), ...,G′fk( fk(ū, v̄))∇x fk(ū, v̄)
}
\{0},

(iii) the vectors
{

G′f1( f1(ū, v̄))∇x f1(ū, v̄),G′f2( f2(ū, v̄))∇x f2(ū, v̄), ...,G′fk( fk(ū, v̄))∇x fk(ū, v̄)
}

are linearly indepen-

dent,

(iv)
k

∑
i=1

λ̄i∇x

(
{G′′fi( fi(ū, v̄))∇x fi(ū, v̄)(∇x fi(ū, v̄))T +G′fi( fi(ū, v̄))∇xx fi(ū, v̄)}q̄

)
q̄ = 0⇒ q̄ = 0.
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Then, p̄ = 0 such that (ū, v̄, λ̄ , p̄ = 0) is feasible solution of (WP) and R(ū, v̄, λ̄ , p̄) = S(ū, v̄, λ̄ , p̄). Also, if the hypothe-
ses of Theorem 3.1 hold, then (ū, v̄, λ̄ , p̄ = 0) is an efficient solution for (WP).

Proof. It follows on the lines of Theorem 3.2.
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